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Abstract

Finite element modelling of piezothermoelastic composite beam with distributed piezoelectric sensor and actuator layers

is considered in this paper. The mathematical model is based on a high-order displacement field, a new high-order electrical

potential field and a linear temperature field. This model is developed for a composite beam structures using generalized

virtual work principle and is facilitated by two nodes Hermitian beam element. Constant-gain negative velocity feedback

control approach has been used for active vibration control with the structures subjected to impulse and thermal

excitations. The influence of the pyroelectric effects on the vibration control performance is also investigated. Comparison

of numerical results from this formulation with previous works, PVDF bimorph beam, shows that the present modelling

method is very efficient. Additional numerical studies for piezothermoelastic composite beam demonstrate capabilities of

the current formulation to predict the thermal deformation of composite beams, as well as the active compensation of these

deformations using piezoelectric structures.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The development of intelligent composite materials with piezoelectric components offers great potential for
use in advanced aerospace structural applications. The coupled electromechanical properties of piezoelectric
ceramics and their availability in the form of thin sheets make them well suited for use as distributed sensors
and actuators for controlling structural response. In the sensors application, mechanically or thermally
induced deformations can be determined from measurement of the induced electrical potential (direct

piezoelectric effect), whereas in actuator applications deformation of strain can be controlled through the
introduction of appropriate electric potential (converse piezoelectric effect). By integrating distributed
piezoelectric sensors/actuators and advanced composites, the potential exists for forming high-strength, high-
stiffness, lightweight structures capable of self-monitoring and self-controlling. Typical applications of such
structure are envisioned in the thermal distortion management of propulsion components and/or space
structures. Before they can be utilized in these applications, however, the performance of piezoelectric
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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structures in thermal environment must be quantified. Consequently, this paper will present the development
of comprehensive mechanics for the analysis of such piezoelectric thermal structures.

There have been various mathematical models developed to describe the behavior of the structure that is
actuated and sensed by piezoelectric materials attached/bonded to it. These models can be classified into three
broad categories as induced strain models (Crawley and Luis [1], Tzou and Gadre [2], Wang and Rogers [3],
and Sung et al. [4]), coupled electromechanical models (Mitchell and Reddy [5], Tzou and Tseng [6], Saravanos
and Heyliger [7], and Heyliger et al. [8]) and coupled piezothermoelastic models (Tzou and Bao [9],
Chandrashekhara and Tenneti [10], and Sunar and Rao [11]).

The induced strain models use approximate theories to incorporate the piezoelectric effects and are
generally limited to predicting only the active response of piezoelectric materials since the electric potential is
neglected as a state variable in the formulation. However, the limitation is found in the induced strain models
and arises from the use of approximate forces to represent the piezoelectric strains. This approximate
representation fails to capture the coupled mechanical and electrical response and limits these models for use
in predicting only the actuator behavior of piezoelectric materials.

The coupled electromechanical models provide a more consistent representation of both the sensory and
active responses of piezoelectric materials by incorporating both the displacements and electric potential as
state variables in the formulation. Typically, these models are implemented as finite element codes to provide a
more general analysis tool and a wide variety of different beam, plate, shell, and solid elements have been
developed. The induced strain limitations are overcome in the coupled electromechanical models through the
use of a more consistent representation of the coupling, which occurs between the electrical and mechanical
responses. However, the thermal effects are neglected.

A natural extension of the coupled electromechanical models is to also incorporate thermal effects. These
coupled thermoelectromechanical models include temperature as an additional state variable to account for
thermal effects in addition to the piezoelectric effects. Thermal effects become important when the
piezoelectric structure has to operate in either extremely hot or cold temperature environments, e.g.
space. These extreme conditions may severely affect the response of piezoelectric structures in three distinct
ways: (1) induction of thermal stresses resulting from differences in the coefficients of thermal expansion;
(2) pyroelectric phenomena; and (3) temperature dependence of the elastic, piezoelectric, and dielectric
properties.

Recently, an increasing number of investigations have addressed piezothermoelasticity. Among the
investigations in piezothermoelasticity, the static and dynamic problems of different structures are discussed
(Tauchert et al. [12]). A coupled thermo-piezoelectric-mechanical model of composite laminates with surface
bonded piezoelectric actuators was developed (Chattopadhyay et al. [13] and Jingmei et al. [14]). A general
solution for dynamic piezothermo-elastic problems of transversely isotropic piezoelectric materials is derived
(Haojiang et al. [15]). Altay and Dökmeci [16] formulated the fundamental equations of thermopiezoelectricity
with second sound in variational form, and systematically derived the system of one-dimensional (1D)
equations for the high-frequency vibrations of a cylindrical rod. The numerical and experimental study of
active compensation of thermal deformation of a composite beam using piezoelectric ceramic actuators was
considered (Song et al. [17]). Altay and Dökmeci [18] modified the Mindlin’s equations of thermopiezoelec-
tricity, by introducing a thermal field vector, and obtained the consistently, both mathematically and
physically, the universal gradient equations in thermopiezoelectricity.

The aim of this research is to study the static and active vibration control of piezothermoelastic composite
beam. The finite element model of piezothermoelastic composite beam is derived. The formulations are based
on a high-order displacement field, a new high-order electrical potential field and a linear temperature model.
In the present work, the constant-gain negative velocity feedback control scheme is used to active vibration
control for piezolaminated beam, subjected to thermal excitation. The pyroelectric effect of the piezoelectric
sensors/actuator due to the temperature variation of the environment is considered also. Specifically, the
content of the paper is stated as follows. In Section 2, the fundamental equations of piezothermoelastic are
summarized. The high-order displacement field and a new high-order electric potential model are developed in
Section 3. Section 4 presents the finite element formulations. The numerical examples, including the PVDF
bimorph and the piezothermoelastic behavior of composite beam, are considered in Section 5. In Section 6,
some conclusions are indicated.
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2. Fundamental piezothermoelastic linear equations

This section outlines the governing equations for piezothermoelastic materials. On account of the classical
electromagnetic field and thermoelastic theories, the three-dimensional (3D) linear fundamental equations for
a piezothermoelastic body of volume O can be summarized as follows (Altay and Dökmeci [19]).

2.1. Divergence equations

These equations relate to the linear stress equations of motion, the linear charge equations of electrostatics
and the thermal energy balance equation

sij;j þ f bi ¼ r €ui in O,

Di;i � q ¼ 0 in O,

hi;i � s ¼ � y0 _Z in O, ð1Þ

where sij stand for the symmetric Cauchy stress tensor components, Di for the electric displacement vector
components, hi for the components of heat flux vector, Z, y0 are the entropy density and the constant positive
reference temperature, respectively, fi, q and s are body mechanical forces, electric charge and heat source in O,
respectively. Note that standard tensors notation is used with Latin indices running from 1 to 3. They obey to
Einstein’s summation convention when repeated.

2.2. Gradient equations

The gradient equations correspond to the linear strain–mechanical displacement, linear electric field–electric
potential and linear thermal field–temperature change relations. They state as

�ij ¼
1
2
ðui;j þ uj;iÞ in O,

Ei ¼ � f;i in O,

hi ¼ � kijy;j in O, ð2Þ

where ekl, Ei, kij, f, y are, respectively, the components of the symmetric Lagrange strain tensor, quasi-static
electric field vector, conductivity tensor, electric potential, and temperature change from the reference
one y0.

2.3. Constitutive equations

The linear constitutive equations coupling the piezothermoelastic field are given by (Benjeddou and
Andrianarison [20])

sij ¼ cijkl�kl � ekijEk � lijy in O,

Di ¼ eijk�jk þ wijEj þ piy in O,

Z ¼ lij�ij þ piEi þ ay in O, ð3Þ

where cijkl, eijk, wij are the elastic, piezoelectric-stress and dielectric material constants, whereas pi, lij are
pyroelectric and thermal stress–temperature material constants. a is a material constant given by

a ¼ rcvy
�1
0 (4)

in which r is the mass density and cv the specific heat under constant volume.

2.4. Boundary conditions

The regular boundary qO ¼ S can be loaded with mechanical surface forces Fi on SF, electric surface
charge Q on SQ, and a heat flux H on SH. It can also support imposed mechanical displacements ūi on Su,
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an electric potential f̄ on Sf, a temperature ȳ on Sy. Where SF [ Su ¼ Sq [ Sf ¼ Sh [ Sy ¼ S and SF \ Su ¼

Sq \ Sf ¼ Sh \ Sy ¼+. The mechanical, electric and thermal boundary conditions can be
written as

ui ¼ ūi on Su sijnj ¼ F on SF ,

f ¼ f̄ on Sf Dini ¼ �Q on SQ,

y ¼ ȳ on Sy hini ¼ H on SH . ð5Þ

Eqs. (1)–(5) constitute the basic governing equations of linear piezothermoelasticty. After substituting
Eqs. (2c) and (3c) into (1c), we get

kijy;ij ¼ y0ðlij _�ij þ pi
_Ei þ a_yÞ (6)

in which the heat source s is neglected. We can see that all equations of (1) are coupled. However, it is
assumed in this paper that the dynamic couplings between the temperature and the mechanical and electric
displacements are small. This assumption essentially provides that temperature changes due to changes
in strains and electric fields are small compared with the magnitude of the thermal. Thus, temperature
changes only produce mechanical and electrical forcing on the piezoelectric material. As a result, Eq. (6)
reduces to

kijy;ij ¼ y0a_y. (7)

Therefore, we can firstly solve the uncoupled Eq. (7) and then study the coupled Eqs. (1a) and (1b) with the
temperature treated as thermal load. In this paper, Eq. (7) is not considered presently, and the temperature in
Eqs. (1a) and (1b) is assumed to be a prescribed value, i.e. a linear distribution along the axis 3 and
independent of the x.
2.5. Generalized virtual work principle

For arbitrary space variable and admissible virtual displacement dui and potential df, Eqs. (1a) and (1b) are
equivalent to Z

O
ðsij;j þ f bi � r €uiÞdui dOþ

Z
O
ðDi;i � qÞdfdO ¼ 0. (8)

Integrating by parts, this equation, and using the divergence theorem, leads to

�

Z
O
sijd�ij dO�

Z
O
r €uidui dOþ

Z
O

DidEi dOZ
O

f bidui dO�
Z
O

qdf dOþ
Z

S

sijnjdui dS þ

Z
S

DinidfdS ¼ 0. ð9Þ

Using the symmetry property of the stress tensor, the boundary conditions (5) and the electric field–electric
potential relation give

�

Z
O
sijd�ij dOþ

Z
SF

F idui dS þ

Z
O

f bidui dOþ f cidui �

Z
O
r €uidui dO

þ

Z
O

DidEi dO�
Z
O

qdf dO�
Z

SQ

QdfdS ¼ 0, ð10Þ

where fci is the components of concentrated load.
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3. Mathematical formulation

3.1. Displacement and strain fields

The third-order displacement field used in this model is given by [21]

Uðx; z; tÞ ¼ uðx; tÞ � z
dwðxÞ

dx
þ z� z3

4

3h2

� �
cxðx; tÞ,

W ðx; z; tÞ ¼ wðx; tÞ. ð11Þ

The x-axis is along the horizontal, z-axis is the vertical axis and this model is independent of the y-variable
points ‘into the page’. The functions U(x, z, t) and W(x, z, t) represent the horizontal and vertical
displacements, respectively; there is no into-the-page displacement. The total thickness of the composite
structure is h. The height of the top and bottom surface are z ¼ h/2 and z ¼ �h/2, respectively. The
subfunctions u(x, t) and w(x, t) can be regarded as the mid-plane horizontal displacement and the mid-plane
vertical displacement, respectively, while cx(x, t) is the shear rotation. Transverse normal strain is assumed to
be negligible.

The set of strain equations can be derived from Eq. (11) using the usual definitions for strain (see Eq. (2a)),
which become

�1 ¼ �x ¼
du

dx
� z

d2w

dx2
þ z�

4z3

3h2

� �
dcx

dx
,

�5 ¼ gzx ¼ cx 1�
4z2

h2

� �
. ð12Þ

In preparation for finite element implementation, the strain and displacement equations (12) and (11) can be
expressed in a more convenient form as

u ¼ Auuu; e ¼ Luuu, (13)

where u ¼ ½U W �T, uu ¼ ½ u w cx �
T, e ¼ ½ �1 �5 �T, and

Au ¼
1 �z

d

dx
z�

4z3

3h2

0 1 0

2
4

3
5; Lu ¼

d

dx
�z

d2

dx2
z�

4z3

3h2

0 0 1�
4z2

h2

2
6664

3
7775.

Remarks: Many two-dimensional in-plane elements are usually based on low-order theory suitable for thin
structures. The present element based upon the high-order displacement theory is applicable to both thin and
moderately thick situations, and is able to account for the transverse shear effects in thick composites without
the need for any shear correction factors.

3.2. High-order electric potential field

Bisegna and Maceri [22] pointed out that the electric potential distribution along the thickness
of a piezoelectric layer has a quadratic component and this higher-order electric behavior should be
addressed. This quadratic electric potential variation is directly coupled to the flexure of the actuators and its
effect is of the same order as the bending stiffness of the actuators (Yang [23]). Although negligible for
thin actuators, this effect should be included for thick actuators. To account for the quadratic electric
potential distribution, the cubic function for electric potential was derived from the Hermitian shape function
of beam element. The electric potential distribution along the thickness has an analogy to the deflection
distribution along the x-axis, the electric field has an analogy to the shear rotation corresponding.
Accordingly, the shape function for two-node Hermitian beam element was adopted to describe the electric
potential distribution.
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The electric potential inside the kth piezoelectric layer is considered through-thickness cubic, and written in
the form

fk
ðx; y; ~zÞ ¼ f k

1ð~zÞE
k
t ðx; yÞ þ f k

2ð~zÞE
k
bðx; yÞ þ f k

3ð~zÞf̄
k
ðx; yÞ, (14)

where Ek
t ðx; yÞ and Ek

bðx; yÞ denote the electric field at the top and bottom surface, respectively, f̄
k
ðx; yÞ

is the difference of electric potential between the top and bottom surface. The interpolation functions
f k

i ði ¼ 1; 2; 3Þ are

f k
1 ¼ � ~zþ 1

2

� �2
~z� 1

2

� �
hk

f k
2 ¼ � ~zþ 1

2

� �
~z� 1

2

� �2
hk

f k
3 ¼ 3 ~zþ 1

2

� �2
� 2 ~zþ 1

2

� �3
� 1

2

9>>>=
>>>;

(15)

in which hk is the thickness of the kth piezoelectric layer and ~z is the local thickness coordinate of the kth
piezoelectric layer, ~z 2 ½�1=2 1=2 � given by

~z ¼
z

hk

�
zk

t þ zk
b

2hk

, (16)

where zk
t and zk

b are the z-axis coordinates for the top and bottom surfaces of the kth piezoelectric layer,
respectively.

It can be noted that there are two special advantages of this electric potential field:
(i)
 The boundary condition of applied voltages ðf̄
k
Þ, the major electrical boundary condition, is satisfied

accurately as follows:

fk
ðx; y; ~zÞ

��z¼zk
t
� fk
ðx; y; ~zÞ

��z¼zk
b ¼ f̄

k
. (17)
(ii)
 It is convenient to deal with the conjuncture conditions between two piezoelectric layers by using of the
electric field at the interface. For more accurately modelling of electric potential, this model may extend to
layerwise cubic electric potential approximations conveniently.
Using the usual definition of the electric field being the negative gradient of the electric potential, the electric
field has the following expression:

Ek ¼
Ex

Ez

" #
k

¼

�
qf
qx

�
qf
qz

8>><
>>:

9>>=
>>;

k

¼ �

f k
1

d

dx
f k
2

d

dx
f k
3

d

dx

df k
1

dz

df k
2

dz

df k
3

dz

2
664

3
775

Ek
t

Ek
b

f̄
k

8>><
>>:

9>>=
>>; ¼ �Lk

fuk
f. (18)

Note that because the electric potential is chosen to be independent of the y-dimension, by definition the
electric field Ey ¼ 0.
3.3. Linear temperature field

The expression for the temperature field (y) is assumed as a linear function of the thickness of the beam:

yðx; zÞ ¼
1

2
�

z

h

� �
ybðxÞ þ

1

2
þ

z

h

� �
ytðxÞ ¼ Byh; (19)

where yt, yb are the top (z/h ¼ 1/2) and bottom (z/h ¼ �1/2) surface temperature, respectively. By ¼

½ 1=2� z=h 1=2þ z=h � is the linear interpolation vector for the temperature variation through the depth;
h ¼ ½ yb yt �

T is the vector of surface temperatures.
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4. Finite element formulation

The analytical formulation described above is complete and solutions can be obtains from it. An exact
solution may be adopted to solve a particular problem or a finite element approach may be used to solve a
more general problem. For the finite element formulation, the degrees of freedom consist of the mechanical
variables, electric potential, and temperature variables. At this point, the finite element work will use a two
nodes Hermitian beam element. The goal of the following derivations is to express the strain–displacement,
electric field–electric potential relations using nodal values and shape functions and then to use this in the
integrand of the generalized virtual work formulation.

4.1. Hermitian beam element

The mechanical variable equation (11) that is based on the third-order displacement theory will be
converted to its finite element representation using appropriate shape functions and mechanical nodal
variables. The mechanical element being considered is a 1D Hermitian beam element for transverse
displacements, as shown in Fig. 1. The three mechanical variables uu will be expressed using four mechanical
nodal variables ue

u as follows:

uu ¼ Nuue
u, (20)

where ue
u ¼ fu1;w1;cx1; ðdw=dxÞ1; u2;w2;cx2; ðdw=dxÞ2g

T, shape function matrix

Nu ¼

N0
1 0 0 0 N0

2 0 0 0

0 N1 0 N 01ðle=2Þ 0 N2 0 N 02ðle=2Þ

0 0 N0
1 0 0 0 N0

2 0

2
64

3
75

in which N0
1; N0

2 are the Lagrangian shape functions defined as

N0
1 ¼ N0

1ðxÞ ¼ ð1� xÞ=2; N0
2 ¼ N0

2ðxÞ ¼ ð1þ xÞ=2 (21)

and the Hermitian shape functions are

N1 ¼ N1ðxÞ ¼ 1
4
ð1� xÞ2ð2þ xÞ; N2 ¼ N2ðxÞ ¼ 1

4
ð2� xÞð1þ xÞ2,

N 01 ¼ N 01ðxÞ ¼
1
4
ð1� xÞ2ð1þ xÞ; N 02 ¼ N 02ðxÞ ¼ �

1
4
ð1� xÞð1þ xÞ2, ð22Þ

where x is the local coordinate defined as

x ¼ 2
x� x1

x2 � x1
� 1.

Using Eqs. (20) and (13), the displacements vector and the strain vector can be expressed as follows:

u ¼ Auuu ¼ AuNuue
u ¼ Nue

u,

� ¼ Luuu ¼ LuNuue
u ¼ Buue

u, ð23Þ

where the N, Bu are, respectively, the displacement interpolation matrix, strain interpolation matrix.
Fig. 1. Two-node beam element and local coordinate system.
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Again, using linear Lagrangian interpolation functions for Et, Eb, and f̄, the vector uf is expressed as

uf ¼ Nfue
f, (24)

where

Nf ¼ ½N
0
1I3 N0

2I3 � and ue
f ¼ ½E

1
t E1

b f̄
1

E2
t E2

b f̄
2
�T

in which I3 is the 3� 3 identity matrix.
From Eqs. (18) and (24), the electric field E is expressed as

E ¼ �Lfuf ¼ �LfNfue
f ¼ �Bfue

f. (25)

Rewrite Eqs. (3a) and (3b) in vector form, they are

r ¼ Ce� eTE � kh,

D ¼ eeþ vE þ ph; ð26Þ

where r and D are the stress vector and the electric displacement vector, respectively. e and E are the strain
vector and the electric field vector, respectively. Matrices C, v, e, k and p are the matrix forms of elastic
constant, dielectric permittivity, piezoelectric constant, thermal–mechanical coupling constant (thermal stress
coefficient), and thermal–piezoelectric coupling constant (pyroelectric constant), respectively.
4.2. Dynamic equations

Substituting Eqs. (23)–(26) into Eq. (10) and assembling the element equations yields

M €uu þ Kuuuu þ Kuaua þ Kusus ¼ Fu þ Kuyh;

Kauuu � Kaaua ¼ �Fa � Kayh;

K suuu � K ssus ¼ �Fs � K syh: ð27Þ

Note that the piezoelectric layers include the piezoelectric sensor and actuator layers, thus, the vector uf is
partitioned to actuator vector ua and sensor vector us. The subscript a and s denote the actuator and sensor,

respectively. The matrices and vectors are given by the mass matrix M ¼
R

V
rNTN dV , the elastic matrix

Kuu ¼
R

V
BT

u CBu dV , matrix coupling thermal–mechanical Kuy ¼
R

V
BT

u kBy dV , matrix coupling electric-

mechanical for actuator and sensor Kui ¼
R

Vi
BT

u eTBf dV ði ¼ a; sÞ, the permittivity matrix for actuator and

sensor Kkk ¼
R

Vk
BT
fvkBf dV ðk ¼ s; aÞ, the matrix coupling electric–thermal for actuator and sensor

Kky ¼
R

Vk
BT
fpkBy dV ðk ¼ s; aÞ, the mechanical load vector Fu ¼

R
V

NTf b dV þ
R

SF
NTF dS þNTf c, the

applied charge vector Fk ¼
R

SD
NT

ff T
k QdS ðk ¼ s; aÞ.

Eq. (27) shows the coupling of the displacement and electric fields. It should be noted that the material
properties are dependent on their positions. As a stress free reference temperature y0 ¼ 0 1C is assumed, the
temperature field is not coupled with the structure deflection and electric field. Consequently, the temperature
field is assumed to vary in the thickness direction only as mentioned above.
4.3. Reduction for degree of freedoms

Note that the electric variables include the electric-field variables and the electric-potential variables. In
general, we concern the electric-potential variables only. Suppose that the total electric variables of the full
model are divided into the electric-field degree of freedoms daE ; dsE and the electric-potential degree of
freedoms daf; dsf, corresponding to this partition, the dynamic equation (27) follows

M €uu þ Kuuuu þ KauEdaE þ Kaufdaf þ K suEdsE þ K sufdsf ¼ Fu þ Kuyh;

KaEuuu � KaEEdaE � KaEfdaf ¼ �FaE � KaEyh;
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Kafuuu � KafEdaE � Kaffdaf ¼ �Faf � Kafyh;

K sEuuu � K sEEdsE � K sEfdsf ¼ �FsE � K sEyh;

K sfuuu � K sfEdsE � K sffdsf ¼ �Fsf � K sfyh: ð28Þ

From Eqs. (28b) and (28d), the electric-field degree of freedoms are expressed as

daE ¼ K�1aEEKaEuuu � K�1aEEKaEfdaf þ K�1aEEKaEyh;

dsE ¼ K�1sEEK sEuuu � K�1sEEK sEfdsf þ K�1sEEK sEyh: ð29Þ

It should be noted that the interpolation f 1k ¼ f 2k ¼ 0 ðk ¼ s; aÞ on the top and bottom surfaces of sensor
and actuator layer. Substituting Eq. (29) into the other three equations of (28), we can obtain

M €uu þ K̄uuuu þ K̄uaua þ K̄usus ¼ Fu þ K̄uyh;

K̄auuu � K̄aadaf ¼ �Faf � K̄ayh;

K̄ suuu � K̄ ssdsf ¼ �Fsf � K̄ syh: ð30Þ

Furthermore, the displacement and electric potential equations can be decoupled using Guyan’s reduction
scheme (Tzou and Tseng [6]). Substituting Eqs. (30b) and (30c) into Eq. (30a), we obtain

M €uu þ C _uu þ Kuu ¼ Fu þ Fy þ Ff, (31)

where the global stiffness matrix K̄ ¼ K̄uu þ K̄uaK̄
�1

aa K̄au þ K̄usK̄
�1

ss K̄ su, and the thermal vectors due to the

thermal strain effect and pyroelectric effect Fy ¼ ðK̄uy � K̄uaK̄
�1

aa K̄ay � K̄usK̄
�1

ss K̄ syÞh. The applied charge

vector Ff ¼ �K̄uaK̄
�1

aa Faf � K̄usK̄
�1

ss Fsf. The damping matrix C ¼ aM+bK, in which a, b are Rayleigh’s
coefficients.

For the sensor layer, the applied charge is zero and the converse piezoelectric effect is assumed negligible.
Using Eq. (28c), the sensor output is

dsf ¼ K̄
�1

ss K̄ suuu þ K̄
�1

ss K̄ syh: (32)

The sensor output voltage can be feed back through an amplifier to the actuator with a change of
polarity. In order to provide proper velocity information to the piezoelectric actuators, the voltage induced in
the sensor is differentiated and feedback. Accordingly, a feedback control gain is used to enhance the
sensor signal and also to change its sign before the voltage is injected into the piezoelectric actuators. In
case of constant-gain velocity feedback control the electrical potential is to be fed back to the actuator is
calculated as

daf ¼ �G _dsf, (33)

where G is the control gain.
In case of multiinput multioutput (MIMO) controllers, the actuator voltages and sensor voltages are vectors

and the control gain is a matrix. However, in case of single input single output system, the actuator and sensor
voltage become scalars and control gain becomes a single value. In case of MIMO control system, when there
are large numbers of sensor/actuator patches with large variation in voltage range, implementation of the
control strategy becomes practically difficult.

5. Example results and discussions

This section aims to validate the theoretical formulation of the present high-order model by comparing its
numerical results with the experimental and numerical results of other researchers and to provide some new
results. The following numerical experiments are divided into two categories:
(i)
 PVDF bimorph beam.

(ii)
 Piezothermoelastic behavior and control of a cantilever piezolaminated beam.
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5.1. PVDF bimorph beam
To validate the model, a piezoelectric bimorph cantilever beam (Fig. 2, 100mm� 5mm� 1mm)
constructed of two PVDF bonded together with opposite polarities is considered. This particular example
has been considered by the following researchers: Hwang and Park [24], Tzou and Ye [25], and Chee and
Steven [21]. The relevant data for PVDF bimorph are shown in Table 1.

Case I (Actuator model): When a unit voltage is applied across the thickness, the induced internal stresses
result in a bending moment, which causes bimorph beam to bend. The theoretical solution to the deflection of
the beam is given by Smits [26]:

wðxÞ ¼
3

2

e31V

E

x

h

� �2
, (34)

where E is Young’s modulus, V the applied voltage, and h the thickness of the beam.
The bimorph beam is modeled using five elements of equal length. The numerical results for the present

method are compared with results from other methods in Table 2. Tzou and Ye [25], using triangular shell
elements, which have both mechanical (FOSDT) and electrical dofs, showed that they produced better results
Fig. 2. PVDF bimorph cantilever beam.

Table 1

Properties for PVDF bimorph cantilever

Elastic modulus 2.0� 109 Pa

Shear modulus 7.75� 108 Pa

Mass density 1.8� 103 kgm�3

Poisson’s ratio 0.29

e31 piezo 0.046Cm�2

e32 piezo 0.046Cm�2

Elec. perm. w11 1.06� 10�10 Fm�1

Elec. perm. w22 1.06� 10�10 Fm�1

Elec. perm. w33 1.06� 10�10 Fm�1

Table 2

Deflections along length of beam (� 10�7m)

x(m) Theory—Smits Solid FE—Tzou Shell FE—Tzou/Ye Mixed FE—Chee Present

0.02 0.138 0.124 0.132 0.138 0.136

0.04 0.552 0.508 0.528 0.552 0.545

0.06 1.24 1.16 1.19 1.242 1.226

0.08 2.21 2.10 2.11 2.208 2.18

0.1 3.45 3.30 3.30 3.45 3.41

dof – 96 132 42 42
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than the thin solid linear elements used by Tzou. The results from the mixed finite element model (Chee et al.
[21]), which uses the Hermitian beam elements with electric potential incorporated via the layerwise
formulation, are fairly agree with theoretical analysis; however, the total number of degrees of freedom is
higher due to the layerwise linear electric potential. The present model, which uses Hermitian beam elements
with high-order electric potential distribution, has a high correlation with the theoretical solutions and a lower
total number of degrees of freedom.

Case II (Sensor model): The second study was where the distributed voltage along the beam was calculated,
when the tip of the beam has load. The bimorph beam is made to deflect to produce 10mm tip deflection and
the output voltage calculated is shown in Fig. 3. In the model of Hwang and Park there are five pieces of
separate electrode, being an equipotential surface, must have a constant voltage, hence the step distribution in
Fig. 3. However, in practice, it should be possible to have point electrodes located at positions of interest.
So measuring the sensor voltages from these point electrodes would produce a sensor distribution as shown
by the results of Tzou and Tseng [6] and the present model. Fig. 3 also indicates a good correlation between
Tzou et al. and the present model.

Case III (Electric potential distribution along thickness): The third study considered the distributed voltage
through thickness of the parallel piezoelectric (PVDF) bimorph with 1mm tip deflection. The ANSYS
coupled-field analysis program ANSYS Multi-physics is used to carry out a full 3D analysis by considering the
coupled-field brick elements (Solid5) and the results from the full 3D FEM are taken as accurate in the present
Fig. 3. The sensor voltage distribution for the bending actuation. (J present; & Tzou/Tseng; B Hwang/Park.)

Fig. 4. Electric potential distribution along thickness (J Ansys;-Present).
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numerical comparison. Fig. 4 shows that the through-the-thickness variation of the electric potential (x ¼ l/2)
predicted by the present model can also be a good approximation to the nonlinear variation predicted by the
full 3D model. Therefore, the present model can predict the actual through-the-thickness electric potential
field. It can be observed that there is significant error in f when the linear electric potential model is adopted,
which will cause the induced potential of the piezoelectric sensors in closed circuit to vanish.

5.2. Piezothermoelastic behavior and control of a cantilever piezolaminated beam

Piezothermoelastic behavior and control of a cantilever piezolaminated graphite/epoxy beam has been
studied. The piezolaminated model considered (Fig. 5, L ¼ 0.5m, hb ¼ 0.01m, b ¼ 0.01m, and
hp ¼ 1� 10�3m) is a graphite/epoxy beam sandwiched between two PZT layers. This beam has been
modeled using the present piezolaminated beam element. Material properties are summarized in Table 3 in
terms of reference material coefficient values: elastic modulus E0 ¼ 2� 109Nm�2; Poisson’s ratio v0 ¼ 1/3;
thermal expansion a0 ¼ 1.2� 10�4; electric permittivity w0 ¼ 1� 10�10 Fm�1; piezoelectric compliance
d0 ¼ 2.5� 10�11 CN�1; and pyroelectric constant p0 ¼ 2.5� 10�5 CK�1m�2. It is assumed that all the
material properties are constant over the temperature range studied in this work.

Three cases were considered. In the first case, the piezothermoelastic effect (sensing capability) of the
distributed piezoelectric sensor due to thermal excitation has been considered. The second case is examining
the deflection due to the thermal gradient. The third case is to demonstrate a control method to simultaneously
control the dynamic deflection and thermally induced static deflection.

Case 1 (Piezothermoelastic effect): Voltage generation in the PZT sensor due to elevated temperature field.
It has been assumed that the beam with the PZT sensor and actuator is placed in an elevated temperature

field and the beam temperature quickly reaches a steady state. It is assumed that there is only one piece of
electrode on the PZT layer. From Eq. (32), It can be noted that the temperature variation can induce an
output voltage in the PZT sensor—the pyroelectric effect. In addition, the thermally induced deformation can
also induce a sensor signal. This piezothermoelastic effect has been studied and these two sensor or voltages
Fig. 5. Piezolaminated cantilever composite beam.

Table 3

Material properties from Blandford et al. [27]

Properties PZT Graphite–epoxy

Elastic modulus E1 ¼ E2 ¼ E3 ¼ 30E0 E1 ¼ 90E0, E2 ¼ E3 ¼ 5E0

Poisson’s ratio v12 ¼ v13 ¼ v23 ¼ v0 v12 ¼ v13 ¼ v23 ¼ v0
Shear modulus G12 ¼ G13 ¼ G23 ¼ 11.25E0 G12 ¼ G13 ¼ 4E0, G23 ¼ 1.5E0

Thermal expansion a1 ¼ a2 ¼ a3 ¼ 0.01a0 a1 ¼ 0.0002a0, a2 ¼ a3 ¼ 0.2a0
Electric permittivity w11 ¼ w22 ¼ w33 ¼ 150w0 –

Piezoelectric compliance d31 ¼ d32 ¼ �7d0, d24 ¼ d15 ¼ 24d0, d33 ¼ 14d0 –

Pyroelectric constant p3 ¼ �p0 –

Mass density (kgm�3) 7750 1600
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Fig. 6. Sensor voltage generated due to thermal excitation.

Fig. 7. Deflection due to thermal gradient (J 50 1C; & 20 1C; B 10 1C; , 5 1C).

Fig. 8. Static control of the thermally induced static deflection for a thermal gradient of 10 1C (J fa ¼ 0V; & fa ¼ 50V; B fa ¼ 100V;

, fa ¼ 160V).
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are shown in Fig. 6. It can be noted that the thermal strain effect is more significant than the pyroelectric effect
on the piezoelectric layers.

Case 2 (Theramlly induced deflection and control): In this case, a temperature gradient has been applied to
the piezolaminated beam such that the temperature of the bottom surface is higher than the top surface.
Owing to this temperature gradient the middle of the beam deflects upwards. Fig. 7 indicates the centerline
deflection of the beam for 5, 10, 20, and 50 1C temperature gradients.
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Fig. 9. Controlled dynamic response without thermal effect (G ¼ 0.02).

Fig. 10. Actuator voltage corresponding to Fig. 9.

Fig. 11. Controlled dynamic response with a thermal gradient of 5 1C (G ¼ 0.02).
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Fig. 8 shows the reduction in the thermally induced static offset due to a static voltage applied to both the
piezoelectric layers (sensor and actuator layers) and how the static deflection is gradually reduced with
the increase of the static voltage. It can be noted that the static control voltages needed to compensate the
thermally induced static deflection is quite high even for a small thermal gradient of 10 1C.
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Fig. 12. Actuator voltage corresponding to Fig. 11.
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Case 3 (Active vibration control with prescribed thermal gradient): An external impulse load of 1N is
assumed to act at the free end of the beam for 1ms duration. Active vibration control performance has been
studied using negative velocity feedback control scheme and a natural structural damping of 1% has been
assumed. Figs. 9 and 10 show the controlled tip displacement versus time and actuator voltage versus time for
the case where there is no thermal gradient. Figs. 11 and 12 indicate the controlled tip displacement and actuator
voltage for the piezolaminated beam subjected to a thermal gradient of 5 1C when subjected to an external
impulse load of 1N. It can be noted from Fig. 11 that there is thermally induced offset, due to a temperature
gradient of 5 1C in the controlled response. That is, the thermally induced offset is not controlled using the
negative velocity feedback control scheme, which is only effective for the control of dynamic oscillation.

6. Conclusions

In the present paper, high-order shear deformable piezolaminated beam is formulated including the
stiffness, mass and thermoelectromechanical coupling effects of distributed piezoelectric sensor and actuator
layers. A new high-order electrical potential distributed model and a linear temperature field are used to derive
the dynamic model. The active vibration control performance of a piezolaminated beam is studied using
constant-gain negative velocity feedback control scheme.

A PVDF bimorph and a piezolaminated graphite–epoxy beam have been considered for case studies. The
quadratic electric potential distribution along thickness is captured, which is good approximation to the
nonlinear variation predicted by the full 3D model. It has been shown that the sensor voltage contributed by
the thermal strain effect is much more than that contributed by pyroelectric effect. The thermally induced
static deflection due to the thermal gradients between top and bottom surfaces of the beam has been studied. It
has been shown that the thermal gradients induce a static deflection and if this needs to be compensated, we
need to apply a static control voltage and the magnitude of the static control voltage needed are quite high
even for a smaller thermal gradient. The deflection induced due to thermal gradient, being a static load cannot
be controlled by the negative velocity feedback control method, which is effective only for dynamic control.

Although the high-order displacement field is applicable to both thin and moderately thick beams, the
interlaminar stresses are omitted which can cause premature structural failure. In order to avoid this failure,
the layerwise displacement theory, which exploits the laminate architecture to separate the thickness variation
from the surface variations, assuming a polynomial approximation for the distribution of the displacement
field along the thickness within each ply, should be a good approach.
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[16] G.A. Altay, M.C. Dökmeci, A non-linear rod theory for high-frequency vibrations of thermopiezoelectric materials, International

Journal of Non-linear Mechanics 37 (2002) 225–243.

[17] G. Song, X. Zhou, W. Binienda, Thermal deformation compensation of a composite beam using piezoelectric actuators, Smart

Materials & Structures 13 (2004) 30–37.
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